

КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМ. АЛЬ-ФАРАБИ Факультет химии и химической технологии

ОБЩАЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Лектор: к.х.н., старший преподаватель Василина Гулзира Кажмуратовна

Лекция 11. Технология органических веществ. Промышленный органический синтез, его значение, сырьевая база. Производство метилового спирта.

Основной органический синтез (тяжёлый органический синтез)

промышленное производство органических соединений на основе углеводородного сырья и продуктов его переработки, реализуемое на агрегатах большой единичной мощности

Целевые продукты ООС

- синтетическое жидкое топливо,
- смазочные масла,
- растворители и экстрагенты,
- мономеры,
- пластификаторы полимерных материалов
- пестициды и т.д.

Полупродукты ООС

- углеводороды (этилен, пропилен, бензол),
- галогензамещенные (дихлорэтан),
- спирты (метанол, этанол),
- альдегиды и кетоны (ацетон, ацетальдегид),
- органические кислоты (уксусная кислота) и т.д.

Сырье и процессы ООС

Производство продуктов ООС базируется на ископаемом органическом сырье:

- нефти
- природном газе,
- каменном угле
- сланцах.

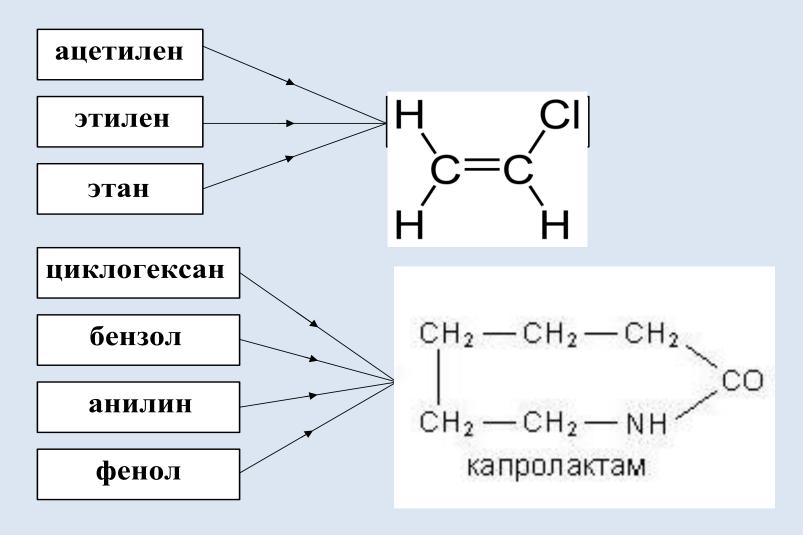
Процессы для получения сырья ООС

- риформинг,
- ректификация,
- пиролиз,
- крекинг,
- коксование
- Полукоксование

Сырье ООС

- алканы (от метана до парафинов С15-С40);
- алкены (от этиленов до пентенов);
- – ароматические углеводороды (бензол, толуол, ксилолы, нафталин);
- – ацетилен
- оксид углерода (II) и синтез-газ.

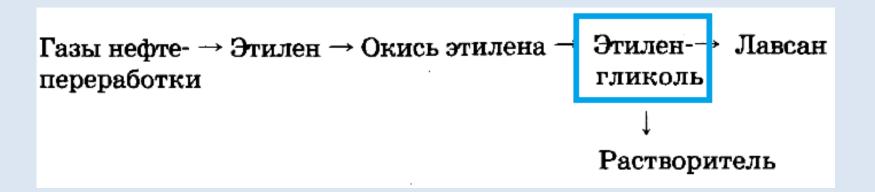
Наиболее важные производства ООС на основе:


- синтез-газа (метанол и формальдегид),
- алканов (высшие кислоты и спирты),
- – алкенов (этанол, изопропанол),
- ацетилена (ацетальдегид, уксусная кислота и ее ангидрид),
- – ароматических углеводородов (этилбензол, стирол, фенол),
- нафтенов (капролактам).

Особенности технологии основного органического и нефтехимического синтеза:

- многовариантность
- многостадийность
- многомаршрутность
- кооперирование и комбинирование
- высокая степень автоматизации
- использование совмещенных процессов

Основной органический синтез


Многовариантность

Основной органический синтез

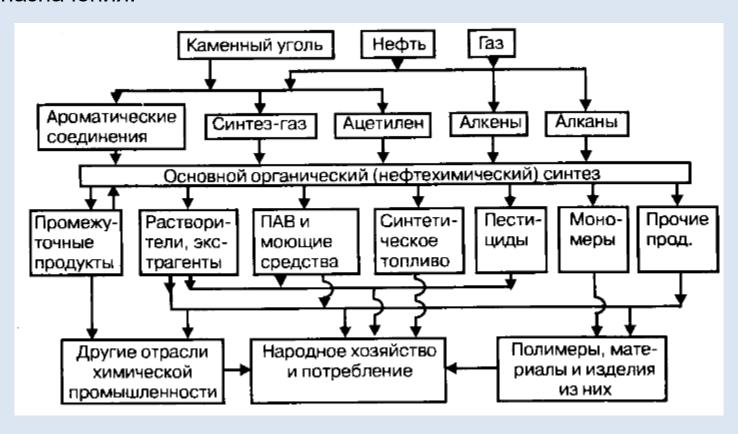
Многостадийность

Исходное сырье→ Полупродукт 1→ Полупродукт 2→ Готовый продукт

Основной органический синтез

Многомаршрутность

Производство винилацетата из ацетилена и уксусной кислоты можно осуществлять по более 30 вариантам технологических схем:


$$HC = CH + CH_3COOH + \frac{1}{2}O_2 \rightarrow CH_2 = CHOCOCH_3 + H_2O$$

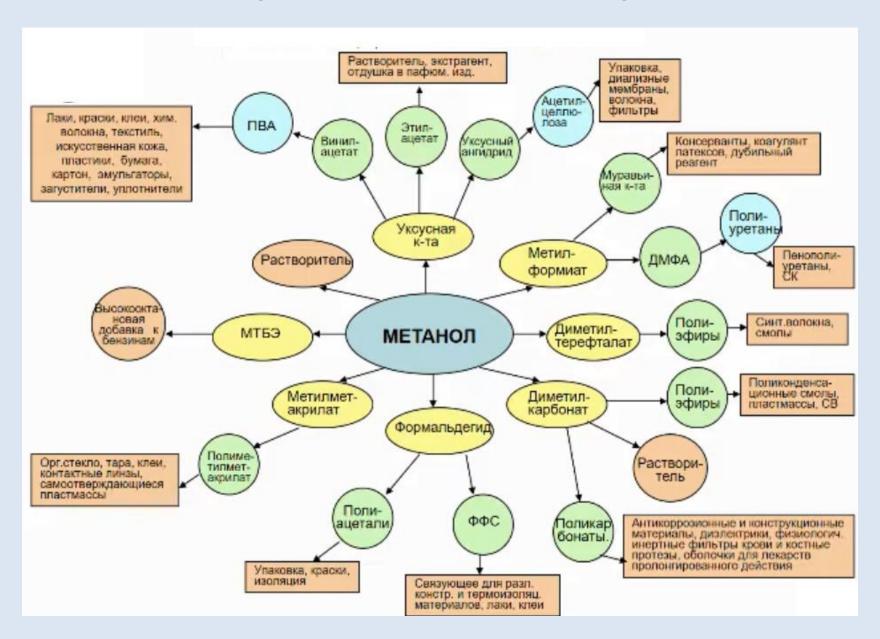
Кооперирование и комбинирование различных процессов, установок и производств, взаимосвязанных единой технологией, позволяет более полно использовать сырье, утилизировать отходы производства, объединить последовательные стадии переработки.

Высокая степень автоматизации на всех уровнях производства, обеспечивающая точное соблюдение технологических параметров.

Использование совмещенных процессов, в которых объединены несколько реакционных процессов или реакционные и массообменные процессы.

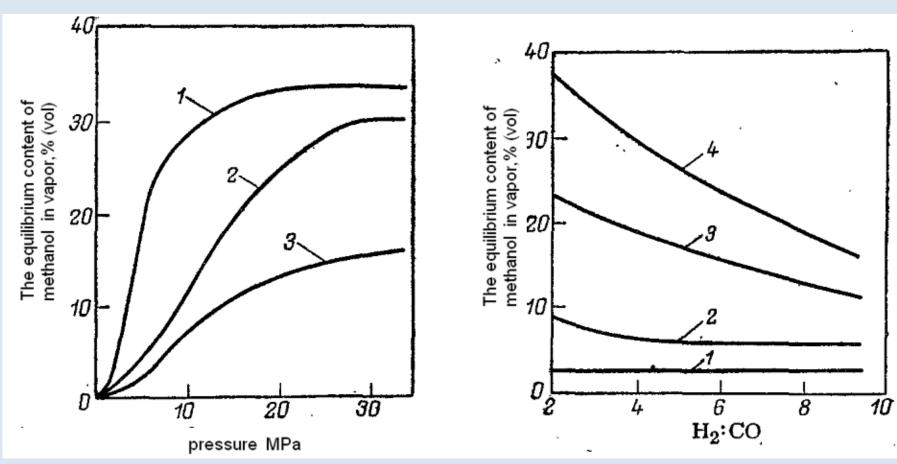
ООС решает две основные задачи: крупномасштабное производство полупродуктов для других отраслей промышленности и получения целевых продуктов общего назначения.

Производство метилового спирта


- Метанол, метиловый спирт, древесный спирт, простейший одноатомный спирт, бесцветная жидкость со слабым запахом, напоминающим запах этилового спирта.
- Температура кипения 64,7 °C, температура замерзания -98 °C, плотность 792 кг/куб.м. Пределы взрывоопасных концентраций в воздухе 6,7-36% по объему. ПДК 5 мг/куб.м. Октановое число больше 150. Теплота сгорания 24000 кДж/кг.

Применение метилового спирта

Физико-химические основы синтеза CH₃OH

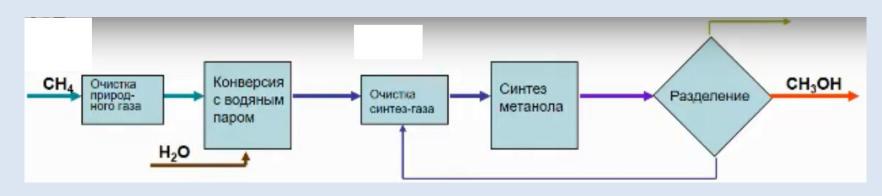

1 CO + 2 H₂
$$\rightleftarrows$$
 CH₃OH $\Delta H_{298}^0 K = -90.8 \, kJ/mol$
2 CO₂ + 3 H₂ \rightleftarrows CH₃OH + H₂O $\Delta H_{298}^0 K = -49.5 \, kJ/mol$
3 CO₂ + H₂ \rightleftarrows CO+H₂O $\Delta H_{298}^0 K = 41.3 \, kJ/mol$

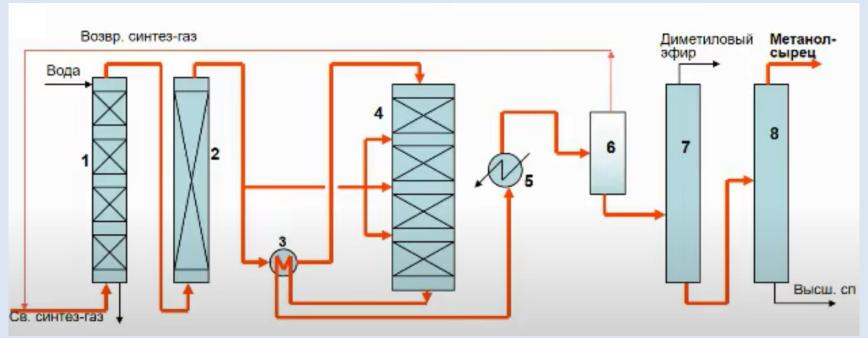
Вторичные превращения CH₃OH

$$CO + 3H_2 \rightleftarrows CH_4 + H_2O$$

 $2CO + 2H_2 \rightleftarrows CH_4 + CO_2$
 $CO + H_2 \rightleftarrows CH_2O$

$$2CH_3OH \rightleftharpoons CH_3-O-CH_3 + H_2O$$
 $CH_3OH + nCO + 2nH_2 \rightleftharpoons CH_3(CH_2)_n-OH$
 $CH_3OH + H_2 \rightleftharpoons CH_4 + H_2O$


Физико-химические основы синтеза CH₃OH



Зависимость равновесной концентрации метанола в парах от давления и температуры (H₂:CO=4:1) 1 – 240°C; 2 – 340°C; 3 – 400°C

Зависимость равновесной концентрации метанола в паре от (H₂:CO=4:1) при любом давлении 1 – 29.4 MPa; 2 – 19.6 MPa; 3 – 9.8 MPa; 4 – 4.9 MPa

Поточная и принципиально-технологическая схема получения метанола

СПАСИБО ЗА ВНИМАНИЕ!!!